28–1 How Does DNA Make Protein?

DNA directs your cells to make certain proteins. How does DNA make proteins? DNA is a model for making a molecule called messenger RNA (mRNA). Messenger RNA is much like DNA. RNA is made of substances, called nitrogen bases, that must match up with the nitrogen bases in DNA. These nitrogen bases will only match up in certain ways. The production of mRNA occurs in the nucleus.

After it is formed, mRNA leaves the nucleus and attaches to a ribosome in the cytoplasm of the cell. Other RNA molecules, called transfer RNA (tRNA), bring protein parts to the mRNA on the ribosome. The two types of RNA molecules match up, join protein parts together, and make a protein. Figure 1 shows the steps involved in making a protein. DNA determines what proteins are produced.

OBJECTIVES
In this exercise, you will:

a. use models to show how DNA makes mRNA.
b. use models to show how mRNA leaves the nucleus and causes tRNA to make proteins.

KEYWORDS
Define the following keywords:

DNA
mRNA
protein
tRNA

MATERIALS
scissors
colored pencils: red, blue and green

PROCEDURE
1. Examine Figure 2, a model of a DNA molecule. DNA has two main sides. These sides are often compared with the upright sides of a ladder. The squares in the model represent sugar molecules. The nitrogen bases A, C, G, and T join to connect the two sides.

FIGURE 1. Formation of protein
2. Cut out the two sides of the DNA model in Figure 2.
3. Color the two sides red.
4. Put the two sides together so that they fit together like the pieces of a puzzle.
 Note that nitrogen base A only binds with T and base G only with C.
5. Examine Figure 5, a model of a cell. The nucleus is in the upper left corner.
 Place the model of DNA in the nucleus. DNA carries the code for making cell
 proteins. That code is the order in which the nitrogen bases appear.
6. Cut out the model of the mRNA molecule in Figure 3. This molecule has only
 one side.
7. Color this model blue. Observe that the sugar in the mRNA molecule is different
 from the sugar in DNA. Also, the nitrogen base U is present instead of T.
8. Open the two sides of the DNA model.
9. Place the mRNA molecule along one side of the DNA model. Note that its bases
 will fit only one side of the DNA. In an actual cell, the mRNA is assembled from
 small molecules to fit exactly along one side of the DNA. The nitrogen bases can
 only fit certain other bases because of their shape. mRNA copies the code of
 DNA.
10. Move the mRNA molecule out of the nucleus to the cytoplasm by following the
 dotted line as a path. This shows that mRNA carries the code of the DNA to the
 ribosomes.
11. Move the mRNA to the cell part called the ribosome. Place it on the dashed lines
 at the ribosome.
12. Put the DNA model sides back together.
13. Cut out the three tRNA molecules shown in Figure 4. Using a green pencil, color only the lower parts (that contain the letters A, U, C, and G). This type of RNA is different from mRNA in two ways. First, each tRNA molecule has only three nitrogen bases and second, a certain protein part is attached to it. Transfer RNA is found in the cytoplasm of the cell. The top of each tRNA has a specific protein part attached to it.
14. Fit the tRNA molecules to the mRNA molecule again, so the bases fit together tightly. Observe which bases of tRNA bind with which bases of mRNA (A with U, G with C).
15. With the tRNA molecules in place on the mRNA molecule, the protein parts can now join with each other. The linked protein parts carried by the tRNA make a chain. This chain separates from the tRNA molecules and leaves the ribosome to become a protein. The code of the DNA molecule directs certain steps in a cell for the process of forming a certain protein.

QUESTIONS
1. What do the letters DNA stand for?

2. In DNA, what nitrogen base always binds with A? _______ G? _______

3. How is mRNA different from DNA?

4. In mRNA, what nitrogen base binds with the DNA base
 A? ______ G? ______ T? ______

5. Where in the cell is mRNA made?

6. To what cell part does mRNA attach?

7. What carries the protein parts to the ribosome and the mRNA?

8. How are mRNA and tRNA alike?

9. What does tRNA have that mRNA does not have?

10. Where in the cell are proteins made?

11. What determines which proteins are produced?
FIGURE 5. Model of a cell

Nucleus

Cytoplasm

Nuclear membrane

Ribosome

mRNA

Protein parts already forming protein